OFFSET
1,2
COMMENTS
For any n, a(n) (mod 10^len(A000422(n))) == a(n + 1) (mod 10^len(A000422(n))), where len(k) := number of digits in k. Assuming len(a(n))>1, this is a general property of every concatenated sequence with fixed rightmost digits (such as A061839 or A014925), as shown in Ripà's book "La strana coda della serie n^n^...^n".
REFERENCES
M. Ripà, La strana coda della serie n^n^...^n, Trento, UNI Service, Nov 2011, page 60. ISBN 978-88-6178-789-6
LINKS
M. Ripà, On the Convergence Speed of Tetration, ResearchGate (2018).
Wikipedia, Tetration
FORMULA
a(n) = (n_n-1_n-2_..._2_1)^^(n_n-1_n-2_..._2_1) (mod 10^len(n_n-1_n-2_..._2_1)), where len(k) := number of digits in k.
EXAMPLE
For n = 3, a(3) = 321^^321 (mod 10^3) = 721. In fact, a(3) (mod 10^3) == a(4) (mod 10^3), since 721 (mod 10^3) == 8721 (mod 10^3).
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Marco Ripà, Aug 10 2018
EXTENSIONS
More terms from Jinyuan Wang, Aug 30 2020
STATUS
editing