[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A317823
T(n,k)=Number of nXk 0..1 arrays with every element unequal to 1, 2 or 3 horizontally, vertically or antidiagonally adjacent elements, with upper left element zero.
8
0, 1, 1, 1, 5, 1, 2, 16, 16, 2, 3, 50, 35, 50, 3, 5, 160, 135, 135, 160, 5, 8, 511, 356, 702, 356, 511, 8, 13, 1634, 1113, 2726, 2726, 1113, 1634, 13, 21, 5226, 3150, 11768, 8556, 11768, 3150, 5226, 21, 34, 16716, 9484, 48526, 47374, 47374, 48526, 9484, 16716, 34
OFFSET
1,5
COMMENTS
Table starts
..0.....1.....1......2.......3........5.........8.........13..........21
..1.....5....16.....50.....160......511......1634.......5226.......16716
..1....16....35....135.....356.....1113......3150.......9484.......27522
..2....50...135....702....2726....11768.....48526.....203049......846901
..3...160...356...2726....8556....47374....179111.....878802.....3604079
..5...511..1113..11768...47374...296968...1458418....8231398....43470698
..8..1634..3150..48526..179111..1458418...7370716...49813114...285365386
.13..5226..9484.203049..878802..8231398..49813114..384248160..2679172247
.21.16716.27522.846901.3604079.43470698.285365386.2679172247.21424520640
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2)
k=2: a(n) = 3*a(n-1) +a(n-2) -3*a(n-4) -2*a(n-5) -a(n-6)
k=3: [order 16] for n>18
k=4: [order 37] for n>43
k=5: [order 94] for n>99
EXAMPLE
Some solutions for n=5 k=4
..0..1..1..0. .0..0..1..1. .0..1..1..0. .0..0..1..0. .0..1..1..0
..0..1..1..0. .1..1..1..0. .1..0..0..1. .1..1..1..1. .0..1..1..1
..1..1..1..0. .0..1..1..0. .0..0..0..1. .1..1..1..0. .0..1..1..0
..0..1..1..0. .0..1..0..1. .1..0..1..1. .0..1..1..0. .0..1..1..0
..0..1..0..1. .1..0..0..1. .1..0..1..0. .0..1..1..0. .0..1..1..0
CROSSREFS
Column 1 is A000045(n-1).
Sequence in context: A085608 A258339 A197080 * A318430 A318098 A318068
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Aug 07 2018
STATUS
approved