[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A305543 revision #12

A305543
Number of chiral pairs of color loops of length n with exactly 4 different colors.
3
0, 0, 0, 3, 24, 124, 588, 2487, 10240, 40488, 158220, 609078, 2333520, 8895204, 33864364, 128793627, 490027200, 1865625340, 7110959340, 27138210888, 103717720000, 396965694444, 1521562700988, 5840509760582, 22450188684288, 86412088367640, 333035003543900, 1285108410802038, 4964755661788560, 19201631174055992
OFFSET
1,4
FORMULA
a(n) = -(k!/4)*(S2(floor((n+1)/2),k) + S2(ceiling((n+1)/2),k)) + (k!/(2n))*Sum_{d|n} phi(d)*S2(n/d,k), with k=4 different colors used and where S2(n,k) is the Stirling subset number A008277.
a(n) = (A052824(n) - A056490(n)) / 2.
a(n) = A305541(n,4).
G.f.: -6 * x^6 * (1+x)^2 / Product_{j=1..4} (1-j*x^2) - Sum_{d>0} (phi(d)/(2d)) * (log(1-4x^d) - 4*log(1-3x^3) + 6*log(1-2x^d) - 4*log(1-x^d)).
EXAMPLE
For a(4)=3, the chiral pairs of color loops are ABCD-ADCB, ACBD-ADBC, and ABDC-ACDB.
MATHEMATICA
k=4; Table[(k!/(2n)) DivisorSum[n, EulerPhi[#] StirlingS2[n/#, k] &] - (k!/4) (StirlingS2[Floor[(n+1)/2], k] + StirlingS2[Ceiling[(n+1)/2], k]), {n, 1, 40}]
PROG
(PARI) a(n) = my(k=4); -(k!/4)*(stirling(floor((n+1)/2), k, 2) + stirling(ceil((n+1)/2), k, 2)) + (k!/(2*n))*sumdiv(n, d, eulerphi(d)*stirling(n/d, k, 2)); \\ Michel Marcus, Jun 06 2018
CROSSREFS
Fourth column of A305541.
Sequence in context: A009137 A319097 A326789 * A356363 A183900 A001089
KEYWORD
nonn,easy
AUTHOR
Robert A. Russell, Jun 04 2018
STATUS
editing