[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A300594 revision #8

A300594
E.g.f. A(x) satisfies: [x^n] A(x)^(n^3) = n^3 * [x^(n-1)] A(x)^(n^3) for n>=1.
8
1, 1, 9, 1483, 976825, 1507281021, 4409747597401, 21744850191313999, 167557834535988306033, 1913194223179191462419065, 31110747474489521617502800201, 698529144858380953105954686101811, 21123268203104470199318422678044241129, 842759726425517953579189712209822358428213, 43599233739340643789919321494623289001407934105
OFFSET
0,3
COMMENTS
Compare e.g.f. to: [x^n] exp(x)^(n^3) = n^2 * [x^(n-1)] exp(x)^(n^3) for n>=1.
LINKS
FORMULA
E.g.f. A(x) satisfies: log(A(x)) = Sum_{n>=1} A300595(n)*x^n, a power series in x with integer coefficients.
EXAMPLE
E.g.f.: A(x) = 1 + x + 9*x^2/2! + 1483*x^3/3! + 976825*x^4/4! + 1507281021*x^5/5! + 4409747597401*x^6/6! + 21744850191313999*x^7/7! + 167557834535988306033*x^8/8! + 1913194223179191462419065*x^9/9! + 31110747474489521617502800201*x^10/10! + ...
ILLUSTRATION OF DEFINITION.
The table of coefficients of x^k in A(x)^(n^2) begins:
n=1: [(1), (1), 9/2, 1483/6, 976825/24, 502427007/40, 4409747597401/720]
n=2: [1, (8), (64), 6856/3, 1022528/3, 1543097816/15, 2237393526784/45]
n=3: [1, 27, (945/2), (25515/2), 10692675/8, 14849374869/40, 1397853444500
n=4: [1, 64, 2304, (226880/3), (14520320/3), 5124803136/5, 20241220116736/
n=5: [1, 125, 16625/2, 2510375/6, (553359625/24), (69169953125/24), ...];
n=6: [1, 216, 24192, 1918728, 131302080, (56555402904/5), (12215967027264/5), ...]; ...
in which the coefficients in parenthesis are related by
1 = 1*1; 64 = 2^3*8; 25515/2 = 3^3*945/2; 14520320/3 = 4^3*226880/3; ...
illustrating that: [x^n] A(x)^(n^3) = n^3 * [x^(n-1)] A(x)^(n^3).
LOGARITHMIC PROPERTY.
The logarithm of the e.g.f. is the integer series:
log(A(x)) = x + 4*x^2 + 243*x^3 + 40448*x^4 + 12519125*x^5 + 6111917748*x^6 + 4308276119854*x^7 + 4151360558858752*x^8 + 5268077625693186225*x^9 + 8567999843251994553500*x^10 + ... + A300595(n)*x^n + ...
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n+1, A=concat(A, 0); V=Vec(Ser(A)^((#A-1)^3)); A[#A] = ((#A-1)^3*V[#A-1] - V[#A])/(#A-1)^3 ); EGF=Ser(A); n!*A[n+1]}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 09 2018
STATUS
approved