[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A297443 revision #5

A297443
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) + 3*a(n-4) - 3*a(n-5), where a(0) = 1, a(1) = 3, a(2) = 6, a(3) = 11, a(4) = 20, a(5) = 33.
2
1, 3, 6, 11, 20, 33, 60, 101, 182, 303, 546, 911, 1640, 2733, 4920, 8201, 14762, 24603, 44286, 73811, 132860, 221433, 398580, 664301, 1195742, 1992903, 3587226, 5978711, 10761680, 17936133, 32285040, 53808401, 96855122, 161425203, 290565366, 484275611
OFFSET
0,2
COMMENTS
Conjecture: a(n) = least positive whose base-3 total variation is n; see A297440.
FORMULA
If n = (1 mod 4) or n = (1 mod 4), then a(n) = 3*a(n-2); otherwise, a(n) = 3*a(n-2) + 2.
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) + 3*a(n-4) - 3*a(n-5), where a(0) = 1, a(1) = 3, a(2) = 6, a(3) = 11, a(4) = 20, a(5) = 33.
G.f.: (3 + 3 x - x^2 + 3 x^3 - 6 x^4)/(1 - x - 2 x^2 + 2 x^3 - 3 x^4 +
3 x^5).
MATHEMATICA
Join[{1}, LinearRecurrence[{1, 2, -2, 3, -3}, {3, 6, 11, 20, 33}, 40]]
CROSSREFS
Cf. A297440.
Sequence in context: A320850 A180086 A116365 * A185083 A208851 A182845
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jan 21 2018
STATUS
proposed