[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A116365
Sum of the sizes of the tails below the Durfee squares of all partitions of n.
5
0, 1, 3, 6, 11, 20, 33, 56, 86, 136, 200, 301, 429, 621, 868, 1219, 1669, 2297, 3091, 4171, 5542, 7357, 9648, 12652, 16402, 21250, 27298, 35003, 44556, 56637, 71515, 90160, 113046, 141464, 176189, 219053, 271149, 335044, 412447, 506787, 620597
OFFSET
1,3
REFERENCES
G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976 (pp. 27-28).
G. E. Andrews and K. Eriksson, Integer Partitions, Cambridge Univ. Press, 2004 (pp. 75-78).
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Alois P. Heinz)
FORMULA
a(n) = Sum_{k=0..n-1} k*A114087(n,k).
G.f.: [(d/dt){sum(q^(k^2)/product((1-q^j)(1-(tq)^j), j=1..k), k=1..oo)}]_{t=1}.
a(n) = (n*A000041(n)-A116503(n))/2. - Vladeta Jovovic, Feb 18 2006
a(n) ~ (1/(8*sqrt(3)) - sqrt(3) * (log(2))^2 / (4*Pi^2)) * exp(Pi*sqrt(2*n/3)). - Vaclav Kotesovec, Jan 03 2019
EXAMPLE
a(4) = 6 because the bottom tails of the five partitions of 4, namely [4], [3,1], [2,2], [2,1,1] and [1,1,1,1], are { }, [1], { }, [1,1] and [1,1,1], respectively, having total size 0+1+0+2+3=6.
MAPLE
g:=sum(z^(k^2)/product((1-z^j)*(1-(t*z)^j), j=1..k), k=1..10): dgdt1:=simplify(subs(t=1, diff(g, t))): dgdt1ser:=series(dgdt1, z=0, 55): seq(coeff(dgdt1ser, z, n), n=1..48);
# second Maple program:
b:= proc(n, i) option remember;
`if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, b(n-i, i))))
end:
a:= n-> add(k*add(b(k, d) *b(n-d^2-k, d),
d=0..floor(sqrt(n))), k=0..n-1):
seq(a(n), n=1..40); # Alois P. Heinz, Apr 2012
MATHEMATICA
b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, b[n-i, i]]]]; a[n_] := Sum[k*Sum[b[k, d]*b[n-d^2-k, d], {d, 0, Floor[Sqrt[n]]}], {k, 0, n-1}]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Mar 31 2015, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Feb 12 2006
STATUS
approved