OFFSET
0
COMMENTS
Periodic with period length 152. - Ray Chandler, Apr 03 2017
In general the expansion of 1/Phi(N) is N-periodic, but also satisfies a linear recurrence of lower order given by degree(Phi(N)) = phi(N) = A000010(N) < N. The signature is given by the coefficients of (1-Phi(N)). - M. F. Hasler, Feb 18 2018
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, order 72, signature (0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0, -1).
MATHEMATICA
CoefficientList[Series[1/Cyclotomic[152, x], {x, 0, 200}], x]
CROSSREFS
Cf. similar sequences (namely 1/Phi(N), N <= 75) listed in A240328.
Cf. also A240465 (76), A014086 (77), A014087 (78), A014093 (84), A014094 (85), A014096 (87), A014099 (90), A014100 (91), A014102 (93), A014104 (95), A014108 (99), A014111 (102), A014114 (105), A014119 (110), A014123 (114), A014124 (115), A014128 (119), A014129 (120), A014135 (126), A014139 (130), A014141 (132), A014142 (133), A014147 (138), A014149 (140), A014152 (143), A014154 (145), A014159 (150), A014163 (154) - A014165 (156), A014170 (161), A014174 (165), A014177 (168), A014179 (170), A014183 (174), A014184 (175), A014189 (180), A014191 (182), A014194 (185) - A014196 (187), A014199 (190), A014204 (195), A014207 (198), A014212 (203), A014218 (209), A014219 (210), A014226 (217), A014229 (220), A014230 (221), A014239 (230), A014240 (231), A014247 (238), A014256 (247), A014262 (253).
KEYWORD
sign,easy
AUTHOR
Vincenzo Librandi, Apr 06 2014
STATUS
editing