[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A240469
Values k where the maximum number of distinct rational solutions to x^2 - Dy^2 = t, 0 < D <= k, 0 < t <= k, achieves a new record.
1
1, 2, 7, 10, 17, 32, 73, 144, 241, 336, 360, 720, 1080, 1260
OFFSET
1,2
COMMENTS
Record values are in A240470.
EXAMPLE
All Diophantine equations x^2 - Dy^2 = t, 0 < D <= 16, 0 < t <= 16, D squarefree, have fewer than 4 distinct solutions; the first with 4 solutions is x^2 - 17y^2 = 16 with the solutions (x,y) = (9/2,1/2), (21,5), (4,0), (13,3), so 17 is in the sequence.
PROG
(PARI) { r(l, k)=if(!issquarefree(l)||!polisirreducible(z^2-l), return(0)); v=bnfisintnorm(bnfinit(z^2-l), k); if(!#v, return(0)); s=0; for(k=1, #v, p=v[k]; a=polcoeff(p, 0); b=polcoeff(p, 1); f=1; for(l=k+1, #v, p=v[l]; aa=polcoeff(p, 0); bb=polcoeff(p, 1); if(abs(a)==abs(aa)&&abs(b)==abs(bb), f=0; break)); s=s+f); s
m=0; n=0; while(1, n=n+1; res=0; for(l=1, n, rr=r(l, n); if(rr>res, res=rr)); for(k=1, n-1, rr=r(n, k); if(rr>res, res=rr)); if(res>m, m=res; print(n, ", "))) }
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Ralf Stephan, Apr 06 2014
STATUS
approved