OFFSET
1,1
COMMENTS
Same as primes p such that if q is the smallest positive quadratic nonresidue mod p, then q^k == 1 mod p for some positive integer k < p-1.
A primitive root of a prime p is always a quadratic nonresidue mod p. (Proof. If g == x^2 mod p, then g^((p-1)/2) == x^(p-1) == 1 mod p, and so g is not a primitive root of p.) But a quadratic nonresidue mod p may or may not be a primitive root of p.
EXAMPLE
The smallest positive quadratic nonresidue of 41 is 3, and 3 is not a primitive root of 41, so 41 is a member.
MATHEMATICA
NR = (Table[p = Prime[n]; First[ Select[ Range[p], JacobiSymbol[#, p] != 1 &]], {n, 1, 300}]); Select[ Prime[ Range[300]], MultiplicativeOrder[ NR[[ PrimePi[#]]], #] < # - 1 &]
CROSSREFS
KEYWORD
nonn
AUTHOR
Jonathan Sondow, Mar 12 2013
STATUS
editing