reviewed
approved
Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
reviewed
approved
proposed
reviewed
editing
proposed
Supersequence of A047936 = primes whose smallest positive primitive root is not prime. (Proof. If p is not in A222717, then the smallest positive quadratic nonresidue of p is a primitive root g. Since the smallest positive quadratic nonresidue is always a prime, g is prime. But since all primitive roots are quadratic nonresidues, g is the smallest positive primitive root of p. Hence p is not in A047936.)
approved
editing
editing
approved
2, 41, 43, 103, 109, 151, 157, 191, 229, 251, 271, 277, 283, 307, 311, 313, 331, 337, 367, 397, 409, 439, 457, 499, 571, 643, 683, 691, 727, 733, 739, 761, 769, 811, 911, 919, 967, 971, 991, 997, 1013, 1021, 1031, 1051, 1069, 1093, 1151, 1163, 1181, 1289, 1297
approved
editing
editing
approved
2, 41, 43, 103, 109, 151, 157, 191, 229, 251, 271, 277, 283, 307, 311, 313, 331, 337, 367, 397, 409, 439, 457, 499, 571, 643, 683, 691, 727, 733, 739, 761, 769, 811, 911, 919, 967, 971, 991, 997, 1013, 1021, 1031, 1051, 1069, 1093, 1151, 1163, 1181, 1289, 1297, 1303, 1321, 1399, 1429, 1459, 1471, 1489, 1543, 1559, 1579, 1597, 1613, 1627, 1657, 1699, 1709, 1723, 1753, 1759, 1783, 1789, 1811, 1871, 1873, 1879, 1933
nn = 300; NR = (Table[p = Prime[n]; First[ Select[ Range[p], JacobiSymbol[#, p] != 1 &]], {n, 1, 300nn}]); Select[ Prime[ Range[300nn]], Mod[ NR[[PrimePi[#]]], #] == 0 || MultiplicativeOrder[ NR[[PrimePi[#]]], #] < # - 1 &]
approved
editing
proposed
approved
editing
proposed