[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A215930 revision #37

A215930
Number of forests on unlabeled nodes with n edges and no single node trees.
4
1, 1, 2, 4, 8, 16, 34, 71, 154, 341, 768, 1765, 4134, 9838, 23766, 58226, 144353, 361899, 916152, 2339912, 6023447, 15617254, 40752401, 106967331, 282267774, 748500921, 1993727506, 5332497586, 14316894271, 38574473086, 104273776038, 282733466684, 768809041078
OFFSET
0,3
COMMENTS
Each forest counted by a(n) with n>0 has number of nodes from the interval [n+1,2*n] and number of trees in [1,n].
Also limiting sequence of reversed rows of A095133.
Differs from A011782 first at n=6 (32) and from A088325 at n=8 (153).
LINKS
FORMULA
a(n) = A095133(2*n,n).
a(n) = A105821(2*n+1,n+1). - Alois P. Heinz, Jul 10 2013
a(n) = A136605(2*n+1,n). - Alois P. Heinz, Apr 11 2014
a(n) ~ c * d^n / n^(5/2), where d = A051491 = 2.955765285..., c = 3.36695186... . - Vaclav Kotesovec, Sep 10 2014
EXAMPLE
a(0) = 1: ( ), the empty forest with 0 trees and 0 edges.
a(1) = 1: ( o-o ), 1 tree and 1 edge. o
a(2) = 2: ( o-o-o ), ( o-o o-o ). |
a(3) = 4: ( o-o-o-o ), ( o-o-o o-o ), ( o-o o-o o-o ), ( o-o-o ).
MAPLE
with(numtheory):
b:= proc(n) option remember; local d, j; `if`(n<=1, n,
(add(add(d*b(d), d=divisors(j)) *b(n-j), j=1..n-1))/(n-1))
end:
t:= proc(n) option remember; local k; `if` (n=0, 1, b(n)-
(add(b(k)*b(n-k), k=0..n)-`if`(irem(n, 2)=0, b(n/2), 0))/2)
end:
g:= proc(n, i, p) option remember; `if`(p>n, 0, `if`(n=0, 1,
`if`(min(i, p)<1, 0, add(g(n-i*j, i-1, p-j)*
binomial(t(i)+j-1, j), j=0..min(n/i, p)))))
end:
a:= n-> g(2*n, 2*n, n):
seq(a(n), n=0..40);
MATHEMATICA
nn = 30; t[x_] := Sum[a[n] x^n, {n, 1, nn}]; a[0] = 0;
a[1] = 1; sol =
SolveAlways[
0 == Series[
t[x] - x Product[1/(1 - x^i)^a[i], {i, 1, nn}], {x, 0, nn}], x];
b[x_] := Sum[a[n] x^n /. sol, {n, 0, nn}]; ft =
Drop[Flatten[
CoefficientList[Series[b[x] - (b[x]^2 - b[x^2])/2, {x, 0, nn}],
x]], 1]; Drop[
CoefficientList[
Series[Product[1/(1 - y ^(i - 1))^ft[[i]], {i, 2, nn}], {y, 0, nn}],
y], -1] (* Geoffrey Critzer, Nov 10 2014 *)
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 27 2012
STATUS
approved