[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A275443
Sum of the asymmetry degrees of all compositions of n without 2's.
2
0, 0, 0, 0, 2, 4, 8, 16, 34, 68, 134, 260, 502, 960, 1824, 3444, 6472, 12108, 22566, 41912, 77608, 143312, 263990, 485196, 889938, 1629256, 2977642, 5433344, 9899776, 18013288, 32734928, 59417944, 107732106, 195130092, 353087560, 638329168, 1153012298
OFFSET
0,5
COMMENTS
The asymmetry degree of a finite sequence of numbers is defined to be the number of pairs of symmetrically positioned distinct entries. Example: the asymmetry degree of (2,7,6,4,5,7,3) is 2, counting the pairs (2,3) and (6,5).
A sequence is palindromic if and only if its asymmetry degree is 0.
REFERENCES
S. Heubach and T. Mansour, Combinatorics of Compositions and Words, CRC Press, 2010.
LINKS
P. Chinn and S. Heubach, Integer Sequences Related to Compositions without 2's, J. Integer Seqs., Vol. 6, 2003.
V. E. Hoggatt, Jr., and Marjorie Bicknell, Palindromic compositions, Fibonacci Quart., Vol. 13(4), 1975, pp. 350-356.
FORMULA
G.f.: g(z) = 2z^4*(1-z)/((1+z)(1-2z+z^2-z^3)^2). In the more general situation of compositions into a[1]<a[2]<a[3]<..., denoting F(z) = Sum(z^{a[j]},j>=1}, we have g(z) = (F(z)^2 - F(z^2))/((1+F(z))(1-F(z))^2).
a(n) = Sum_{k >= 0} k*A275442(n,k).
EXAMPLE
a(5) = 4 because the compositions of 5 without 2's are 5, 41, 14, 311, 131, 113, and 11111 and the sum of their asymmetry degrees is 0+1+1+1+0+1+0=4.
MAPLE
g := 2*z^4*(1-z)/((1+z)*(1-2*z+z^2-z^3)^2): gser := series(g, z = 0, 45): seq(coeff(gser, z, n), n = 0 .. 40);
MATHEMATICA
Table[Total@ Map[Total, Map[Map[Boole[# >= 1] &, BitXor[Take[# - 1, Ceiling[Length[#]/2]], Reverse@ Take[# - 1, -Ceiling[Length[#]/2]]]] &, Flatten[Map[Permutations, DeleteCases[IntegerPartitions@ n, {___, a_, ___} /; a == 2]], 1]]], {n, 0, 25}] // Flatten (* Michael De Vlieger, Aug 17 2016 *)
PROG
(PARI) concat(vector(4), Vec(2*x^4*(1-x)/((1+x)*(1-2*x+x^2-x^3)^2) + O(x^50))) \\ Colin Barker, Aug 29 2016
CROSSREFS
Sequence in context: A210541 A275545 A273972 * A288170 A088325 A215930
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, Aug 16 2016
STATUS
approved