[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A203303 revision #18

A203303
Vandermonde determinant of the first n terms of (1,2,4,8,16,...).
6
1, 1, 6, 1008, 20321280, 203199794380800, 4096245678214226116608000, 671169825411994707343327912777482240000, 3589459026274030507466469204160461571257625328222208000000, 2511229721141086754031154605327661795863172723306019839389105937236728217600000000
OFFSET
1,3
COMMENTS
Each term divides its successor, as in A002884. Indeed, 2*v(n+1)/v(n) divides v(n+2)/v(n+1), as in A171499.
LINKS
Daniel M. Kane, Carlo Sanna, and Jeffrey Shallit, Waring's theorem for binary powers, arXiv:1801.04483 [math.NT], Jan 13 2018.
FORMULA
a(n) = Product_{0 <= i < j <= n-1} (2^j - 2^i) = 2^(n*(n-1)*(n-2)/6) * Product_{1<=k<=n-1} (2^k-1)^(n-k). - Robert Israel, Jan 16 2018
MAPLE
with(LinearAlgebra):
a:= n-> Determinant(VandermondeMatrix([2^i$i=0..n-1])):
seq(a(n), n=1..12); # Alois P. Heinz, Jul 23 2017
MATHEMATICA
f[j_] := 2^(j - 1); z = 15;
v[n_] := Product[Product[f[k] - f[j], {j, 1, k - 1}], {k, 2, n}]
Table[v[n], {n, 1, z}] (* A203303 *)
Table[v[n + 1]/v[n], {n, 1, z - 1}] (* A002884 *)
Table[v[n] v[n + 2]/(2*v[n + 1]^2), {n, 1, z - 1}] (* A171499 *)
Table[FactorInteger[v[n]], {n, 1, z - 1}]
CROSSREFS
Cf. A000079.
Sequence in context: A024085 A080474 A079190 * A159865 A370680 A004806
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jan 01 2012
STATUS
editing