[go: up one dir, main page]

login
A134862 revision #20

A134862
Wythoff ABB numbers.
11
8, 21, 29, 42, 55, 63, 76, 84, 97, 110, 118, 131, 144, 152, 165, 173, 186, 199, 207, 220, 228, 241, 254, 262, 275, 288, 296, 309, 317, 330, 343, 351, 364, 377, 385, 398, 406, 419, 432, 440, 453, 461, 474, 487, 495, 508, 521, 529, 542, 550, 563, 576, 584, 597
OFFSET
1,1
COMMENTS
The lower and upper Wythoff sequences, A and B, satisfy the complementary equation ABB=2A+3B.
LINKS
Clark Kimberling, Complementary equations and Wythoff Sequences, Journal of Integer Sequences, 11 (2008) Article 08.3.3.
FORMULA
a(n) = A(B(B(n))), n>=1, with A=A000201, the lower Wythoff sequence and B=A001950, the upper Wythoff sequence.
PROG
(Python)
from sympy import floor
from mpmath import phi
def A(n): return floor(n*phi)
def B(n): return floor(n*phi**2)
def a(n): return A(B(B(n))) # Indranil Ghosh, Jun 10 2017
(Python)
from math import isqrt
def A134862(n): return 5*(n+isqrt(5*n**2)>>1)+3*n # Chai Wah Wu, Aug 10 2022
CROSSREFS
Let A = A000201, B = A001950. Then AA = A003622, AB = A003623, BA = A035336, BB = A101864. The eight triples AAA, AAB, ..., BBB are A134859, A134860, A035337, A134862, A134861, A134863, A035338, A134864, resp.
Sequence in context: A321439 A271921 A003249 * A302253 A090206 A139590
KEYWORD
nonn
AUTHOR
Clark Kimberling, Nov 14 2007
STATUS
approved