[go: up one dir, main page]

login
A134861
Wythoff BAA numbers.
11
2, 10, 15, 23, 31, 36, 44, 49, 57, 65, 70, 78, 86, 91, 99, 104, 112, 120, 125, 133, 138, 146, 154, 159, 167, 175, 180, 188, 193, 201, 209, 214, 222, 230, 235, 243, 248, 256, 264, 269, 277, 282, 290, 298, 303, 311, 319, 324, 332, 337, 345, 353, 358, 366, 371
OFFSET
1,1
COMMENTS
The lower and upper Wythoff sequences, A and B, satisfy the complementary equation BAA=A+2B-3.
Also numbers with suffix string 0010, when written in Zeckendorf representation (with leading zero's for the first term). - A.H.M. Smeets, Mar 20 2024
LINKS
Clark Kimberling, Complementary equations and Wythoff Sequences, Journal of Integer Sequences 11 (2008) Article 08.3.3.
FORMULA
a(n) = B(A(A(n))), n>=1, with A=A000201, the lower Wythoff sequence and B=A001950, the upper Wythoff sequence.
PROG
(Python)
from sympy import floor
from mpmath import phi
def A(n): return floor(n*phi)
def B(n): return floor(n*phi**2)
def a(n): return B(A(A(n))) # Indranil Ghosh, Jun 10 2017
(Python)
from math import isqrt
def A134861(n): return 3*((n+isqrt(5*n**2)>>1)-1)+(n<<1) # Chai Wah Wu, Aug 10 2022
CROSSREFS
Let A = A000201, B = A001950. Then AA = A003622, AB = A003623, BA = A035336, BB = A101864. The eight triples AAA, AAB, ..., BBB are A134859, A134860, A035337, A134862, A134861, A134863, A035338, A134864, resp.
Sequence in context: A031222 A272041 A212160 * A063610 A369650 A181474
KEYWORD
nonn
AUTHOR
Clark Kimberling, Nov 14 2007
STATUS
approved