[go: up one dir, main page]

login
A047300 revision #13

A047300
Numbers that are congruent to {2, 3, 4, 6} mod 7.
1
2, 3, 4, 6, 9, 10, 11, 13, 16, 17, 18, 20, 23, 24, 25, 27, 30, 31, 32, 34, 37, 38, 39, 41, 44, 45, 46, 48, 51, 52, 53, 55, 58, 59, 60, 62, 65, 66, 67, 69, 72, 73, 74, 76, 79, 80, 81, 83, 86, 87, 88, 90, 93, 94, 95, 97, 100, 101, 102, 104, 107, 108, 109, 111
OFFSET
1,1
FORMULA
G.f.: x*(2+x+x^2+2*x^3+x^4) / ( (1+x)*(x^2+1)*(x-1)^2 ). - R. J. Mathar, Oct 25 2011
From Wesley Ivan Hurt, Jun 02 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (14*n-5-i^(2*n)-(1-3*i)*i^(-n)-(1+3*i)*i^n)/8 where i=sqrt(-1).
a(2k) = A047280(k), a(2k-1) = A047348(k). (End)
MAPLE
A047300:=n->(14*n-5-I^(2*n)-(1-3*I)*I^(-n)-(1+3*I)*I^n)/8: seq(A047300(n), n=1..100); # Wesley Ivan Hurt, Jun 02 2016
MATHEMATICA
Table[(14n-5-I^(2n)-(1-3*I)*I^(-n)-(1+3*I)*I^n)/8, {n, 80}] (* Wesley Ivan Hurt, Jun 02 2016 *)
PROG
(Magma) [n : n in [0..150] | n mod 7 in [2, 3, 4, 6]]; // Wesley Ivan Hurt, Jun 02 2016
CROSSREFS
Sequence in context: A145733 A356896 A111251 * A026439 A285082 A249602
KEYWORD
nonn,easy
STATUS
approved