[go: up one dir, main page]

login
Numbers that are congruent to {2, 3, 4, 6} mod 7.
1

%I #13 Sep 08 2022 08:44:56

%S 2,3,4,6,9,10,11,13,16,17,18,20,23,24,25,27,30,31,32,34,37,38,39,41,

%T 44,45,46,48,51,52,53,55,58,59,60,62,65,66,67,69,72,73,74,76,79,80,81,

%U 83,86,87,88,90,93,94,95,97,100,101,102,104,107,108,109,111

%N Numbers that are congruent to {2, 3, 4, 6} mod 7.

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,1,-1).

%F G.f.: x*(2+x+x^2+2*x^3+x^4) / ( (1+x)*(x^2+1)*(x-1)^2 ). - _R. J. Mathar_, Oct 25 2011

%F From _Wesley Ivan Hurt_, Jun 02 2016: (Start)

%F a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.

%F a(n) = (14*n-5-i^(2*n)-(1-3*i)*i^(-n)-(1+3*i)*i^n)/8 where i=sqrt(-1).

%F a(2k) = A047280(k), a(2k-1) = A047348(k). (End)

%p A047300:=n->(14*n-5-I^(2*n)-(1-3*I)*I^(-n)-(1+3*I)*I^n)/8: seq(A047300(n), n=1..100); # _Wesley Ivan Hurt_, Jun 02 2016

%t Table[(14n-5-I^(2n)-(1-3*I)*I^(-n)-(1+3*I)*I^n)/8, {n, 80}] (* _Wesley Ivan Hurt_, Jun 02 2016 *)

%o (Magma) [n : n in [0..150] | n mod 7 in [2, 3, 4, 6]]; // _Wesley Ivan Hurt_, Jun 02 2016

%Y Cf. A047280, A047348.

%K nonn,easy

%O 1,1

%A _N. J. A. Sloane_