[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A034951 revision #22

A034951
Expansion of eta(8z)*eta(16z)*theta_3(2z)*theta_3(4z).
1
1, 2, 2, 4, 1, -2, 2, -4, -2, 2, -8, -4, -1, -4, -6, 0, -4, -8, 10, -4, -6, 6, 2, 8, 9, -4, -6, 4, 4, 14, 2, 4, 4, 10, 8, -12, 14, -2, 8, 8, -11, -6, -4, 12, -2, -8, 0, -4, -2, -2, -6, 4, -16, -2, -6, -20, 2, 8, 2, -8, -7, -12, -12, -16, 12, -6, -8, 8, 10, -10, -16, 4, -12, 18, 18, -4, -2, 0, 18, 12, -16, 2, -8, 20, -9, 2, 18, -4, 28, -6, 2
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Ken Ono and Christopher Skinner, Fourier Coefficients of Half-Integral Weight Modular Forms Modulo l, Ann. Math., 147 (1998), 453-470.
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
G.f.: Product_{k>0} (1 - x^(2*k)) * (1 + x^k)^2 * (1 - x^(4*k))^3 / (1 + x^(4*k)). - Michael Somos, Sep 21 2005
Euler transform of period 8 sequence [2, -1, 2, -5, 2, -1, 2, -4, ...]. - Michael Somos, Sep 21 2005
Expansion of q^(-1/2) * (eta(q^2)^3 * eta(q^4)^4) / (eta(q)^2 * eta(q^8)) in powers of q. - Michael Somos, Sep 21 2005
Expansion of phi(x) * f(x^2)^2 * f(-x^8) = psi(x)^2 * f(x^2) * f(-x^4) = psi(x)^2 * psi(-x^2) * phi(x^2) = psi(x^2)^2 * phi(x) * phi(-x^4) = psi(x)^2 * psi(x^2) * phi(-x^4) in powers of x where phi(), psi(), f() are Ramanujan theta functions. - Michael Somos, Jul 07 2014
a(31*n + 15) = 0 unless n == 15 (mod 31). a(961*n + 480) = -31 * a(n). - Michael Somos, Jul 07 2014
EXAMPLE
G.f. = 1 + 2*x + 2*x^2 + 4*x^3 + x^4 - 2*x^5 + 2*x^6 - 4*x^7 - 2*x^8 + ...
G.f. = q + 2*q^3 + 2*q^5 + 4*q^7 + q^9 - 2*q^11 + 2*q^13 - 4*q^15 - 2*q^17 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, x]^2 EllipticTheta[ 3, 0, x] EllipticTheta[ 4, 0, x^4] / (4 x^(1/2)), {x, 0, n}];
QP = QPochhammer; s = (QP[q^2]^3*QP[q^4]^4)/(QP[q]^2*QP[q^8]) + O[q]^90; CoefficientList[s, q] (* Jean-François Alcover, Nov 14 2015, adapted from PARI *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^3 * eta(x^4 + A)^4 / (eta(x + A)^2 * eta(x^8 + A)), n))}; /* Michael Somos, Sep 21 2005 */
CROSSREFS
Sequence in context: A099320 A206714 A230442 * A317826 A317836 A214740
KEYWORD
sign
STATUS
approved