[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A034949
Expansion of eta(8z)*eta(16z)*theta_3(z).
1
1, 2, 0, 0, 2, 0, 0, 0, -1, 0, 0, 0, -2, 0, 0, 0, 0, -6, 0, 0, -4, 0, 0, 0, -1, 0, 0, 0, 2, 0, 0, 0, -4, 0, 0, 0, 2, 0, 0, 0, 4, 0, 0, 0, 2, 0, 0, 0, 1, 10, 0, 0, -2, 0, 0, 0, 4, 0, 0, 0, 2, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, -4, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 4, 0, 0, 0, -4, 0, 0, 0, -4, 0, 0, 0, 0
OFFSET
1,2
REFERENCES
Ono and Skinner, Ann. Math., 147 (1998), 453-470.
LINKS
Matija Kazalicki, Congruent numbers and congruences between half-integral weight modular forms, Journal of Number Theory 133.4 (2013): 1079-1085; MR 3003987 [From N. J. A. Sloane, Oct 18 2014]
FORMULA
Expansion of eta(q^2)^5 * eta(q^8) * eta(q^16) / (eta(q)^2 * eta(q^4)^2) in powers of q. - Michael Somos, Nov 03 2011
Euler transform of period 16 sequence [ 2, -3, 2, -1, 2, -3, 2, -2, 2, -3, 2, -1, 2, -3, 2, -3, ...]. - Michael Somos, Nov 03 2011
EXAMPLE
x + 2*x^2 + 2*x^5 - x^9 - 2*x^13 - 6*x^18 - 4*x^21 - x^25 + 2*x^29 + ...
MATHEMATICA
QP = QPochhammer; s = QP[q^2]^5*QP[q^8]*(QP[q^16]/(QP[q]^2*QP[q^4]^2)) + O[q]^100; CoefficientList[s, q] (* Jean-François Alcover, Nov 25 2015, after Michael Somos *)
PROG
(PARI) {a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^2 + A)^5 * eta(x^8 + A) * eta(x^16 + A) / (eta(x + A)^2 * eta(x^4 + A)^2), n))} /* Michael Somos, Nov 03 2011 */
CROSSREFS
Sequence in context: A258322 A258034 A243828 * A263767 A185338 A208603
KEYWORD
sign
STATUS
approved