[go: up one dir, main page]

login
A003420 revision #30

A003420
Values of m in the discriminant D = -4*m leading to a new maximum of the L-function of the Dirichlet series L(1) = Sum_{k=1..oo} Kronecker(D,k)/k.
(Formerly M1387)
4
1, 2, 5, 11, 14, 26, 41, 89, 101, 194, 314, 341, 689, 1091, 1154, 1889, 2141, 3449, 3506, 5561, 8126, 8774, 10709, 13166, 15461, 23201, 24569, 30014, 81149, 81626, 162686, 243374, 644474, 839354, 879941
OFFSET
1,2
COMMENTS
In Shanks's Table 5 "Hichamps, -4N = Discriminant", N = 1 is omitted, and N = 23201 is missing. Shanks describes the table as being tentative after N = 24569. In Buell's Table 10 "Successive maxima of L(1) for even discriminants", the values N = 11 and N = 1091 are missing in the D/4 column. The further terms 644474, 839354, 879941, provided there require an independent check. - Hugo Pfoertner, Feb 02 2020
REFERENCES
D. Shanks, Systematic examination of Littlewood's bounds on L(1,chi), pp. 267-283 of Analytic Number Theory, ed. H. G. Diamond, Proc. Sympos. Pure Math., 24 (1973). Amer. Math. Soc.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Duncan A. Buell, Small class numbers and extreme values of L-functions of quadratic fields, Math. Comp., 31 (1977), 786-796 (Table 10, page 792).
D. Shanks, Systematic examination of Littlewood's bounds on L(1,chi), Proc. Sympos. Pure Math., 24 (1973). Amer. Math. Soc. (Annotated scanned copy)
EXAMPLE
a(1) = 1: L(1) for D=-4*1 ~= 0.785398... = Pi/4.
a(2) = 2: L(1) for D=-4*2 ~= 1.11072073... = Pi/(2*sqrt(2)), a(2) > a(1);
L(1) for D=-4*3 ~= 0.90689..., L(1) for D=-4*4 ~= 0.785398..., both < a(2);
a(3) = 5: L(1) for D=-4*5 = 1.40496..., a(3) > a(2).
CROSSREFS
Cf. A003521.
Cf. A331949, which has almost identical terms.
Sequence in context: A373337 A331949 * A356426 A206602 A338013 A336190
KEYWORD
nonn,more
EXTENSIONS
New title, a(1) prepended, missing term 23201 and a(29)-a(33) from Hugo Pfoertner, Feb 02 2020
Term 6254 deleted and 3 further term < 10^6 added by Hugo Pfoertner, Aug 27 2022
STATUS
proposed