[go: up one dir, main page]

login
A003419
Values of m in the discriminant D = 4*m leading to a new minimum of the L-function of the Dirichlet series L(1) = Sum_{k>0} Kronecker(D,k)/k.
(Formerly M2102)
5
1, 2, 17, 167, 227, 362, 398, 331427, 430022, 737183, 800663, 821498, 1475858, 2271407, 3009173, 5417453
OFFSET
1,2
COMMENTS
The terms a(2)-a(7) are given in Shanks's Table 4 "Lochamps, 4M = Discriminant". This table gives some values of L(1) for larger discriminants, e.g., L(1) = 0.2510... for D = 4*4813372912697. In comparison, L(1) = 0.28422 for D = 4*a(16) = 4*5417453. - Hugo Pfoertner, Feb 07 2020
REFERENCES
D. Shanks, Systematic examination of Littlewood's bounds on L(1,chi), pp. 267-283 of Analytic Number Theory, ed. H. G. Diamond, Proc. Sympos. Pure Math., 24 (1973). Amer. Math. Soc.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
D. Shanks, Systematic examination of Littlewood's bounds on L(1,chi), Proc. Sympos. Pure Math., 24 (1973). Amer. Math. Soc. (Annotated scanned copy)
CROSSREFS
KEYWORD
nonn,more
EXTENSIONS
New title, a(1) prepended, and a(8)-a(13) from Hugo Pfoertner, Feb 04 2020
a(14)-a(15) from Hugo Pfoertner, Feb 05 2020
a(16) from Hugo Pfoertner, Feb 07 2020
STATUS
approved