[go: up one dir, main page]

login
A373382
a(n) = gcd(A329697(n), A331410(n)), where A329697, A331410 give the number of iterations needed to reach a power of 2, when using the map n -> n-(n/p), or respectively, n -> n+(n/p), where p is the largest prime factor of n.
1
0, 0, 1, 0, 1, 1, 1, 0, 2, 1, 2, 1, 2, 1, 1, 0, 1, 2, 3, 1, 1, 2, 1, 1, 2, 2, 3, 1, 1, 1, 1, 0, 3, 1, 3, 2, 1, 3, 3, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 2, 2, 2, 1, 3, 1, 1, 4, 1, 4, 1, 1, 1, 1, 0, 1, 3, 4, 1, 1, 3, 1, 2, 1, 1, 1, 3, 1, 3, 1, 1, 4, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 4, 2, 1, 2, 3, 2, 4
OFFSET
1,9
COMMENTS
As A329697 and A331410 are both fully additive sequences, all sequences that give the positions of multiples of some natural number k in this sequence are closed under multiplication, i.e., are multiplicative semigroups.
LINKS
FORMULA
a(n) = gcd(A329697(n), A334861(n)) = gcd(A331410(n), A334861(n)).
a(n) = gcd(A329697(n), A335877(n)) = gcd(A331410(n), A335877(n)).
PROG
(PARI)
A329697(n) = { my(f=factor(n)); sum(k=1, #f~, if(2==f[k, 1], 0, f[k, 2]*(1+A329697(f[k, 1]-1)))); };
A331410(n) = { my(f=factor(n)); sum(k=1, #f~, if(2==f[k, 1], 0, f[k, 2]*(1+A331410(f[k, 1]+1)))); };
A373382(n) = gcd(A329697(n), A331410(n));
CROSSREFS
Cf. also A373370.
Sequence in context: A214339 A129174 A129175 * A334377 A063053 A063050
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 06 2024
STATUS
approved