[go: up one dir, main page]

login
A371628
a(n) = Sum_{1 <= x_1, x_2, x_3, x_4 <= n} ( gcd(x_1, n)/gcd(x_1, x_2, x_3, x_4, n) )^3.
4
1, 65, 757, 4225, 16001, 49205, 119365, 271489, 554797, 1040065, 1783541, 3198325, 4850977, 7758725, 12112757, 17392769, 24211265, 36061805, 47162485, 67604225, 90359305, 115930165, 148291397, 205517173, 250266001, 315313505, 404686153, 504317125, 595481825
OFFSET
1,2
LINKS
FORMULA
a(n) = Sum_{d|n} phi(n/d) * (n/d)^3 * sigma_6(d^2)/sigma_3(d^2).
From Amiram Eldar, May 24 2024: (Start)
Multiplicative with a(p^e) = (p^(6*e+2)*(p^4+p^3+2*p^2+p+1) - p^(4*e+2)*(p^2-p+1) + p^2+p+1)/((p+1)^2*(p^2+1)*(p^2-p+1)).
Dirichlet g.f.: zeta(s)*zeta(s-4)*zeta(s-6)/zeta(s-3)^2.
Sum_{k=1..n} a(k) ~ c * n^7 / 7, where c = zeta(3)*zeta(7)/zeta(4)^2 = 1.034718122... . (End)
MATHEMATICA
f[p_, e_] := (p^(6*e+2)*(p^4+p^3+2*p^2+p+1) - p^(4*e+2)*(p^2-p+1) + p^2+p+1)/((p+1)^2*(p^2+1)*(p^2-p+1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 30] (* Amiram Eldar, May 24 2024 *)
PROG
(PARI) a(n) = sumdiv(n, d, eulerphi(n/d)*(n/d)^3*sigma(d^2, 6)/sigma(d^2, 3));
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
Seiichi Manyama, May 24 2024
STATUS
approved