OFFSET
0,2
COMMENTS
These are never prime, as a(n) = (2*n^2 + 2*n + 1) * (n^4 + 2*n^3 + 5*n^2 + 4*n + 1). - Jonathan Vos Post, Aug 17 2011
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..10000
Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
FORMULA
From Colin Barker, Jul 09 2012: (Start)
G.f.: (1 + 58*x + 359*x^2 + 604*x^3 + 359*x^4 + 58*x^5 + x^6)/(1-x)^7.
a(n) = 1 + 6*n + 15*n^2 + 20*n^3 + 15*n^4 + 6*n^5 + 2*n^6. (End)
E.g.f.: (1 +64*x +332*x^2 +440*x^3 +205*x^4 +36*x^5 +2*x^6)*exp(x). - G. C. Greubel, Nov 09 2019
MAPLE
seq(n^6+(n+1)^6, n=0..35);
MATHEMATICA
Table[n^6 + (n+1)^6, {n, 0, 35}] (* Alonso del Arte, Aug 17 2011 *)
LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {1, 65, 793, 4825, 19721, 62281, 164305}, 30] (* Harvey P. Dale, Jun 19 2021 *)
PROG
(Magma) [(n+1)^6+n^6: n in [0..35]]; // Vincenzo Librandi, Aug 27 2011
(PARI) vector(36, n, n^6+(n-1)^6) \\ G. C. Greubel, Nov 09 2019
(Sage) [n^6+(n+1)^6 for n in (0..35)] # G. C. Greubel, Nov 09 2019
(GAP) List([0..35], n-> n^6+(n+1)^6); # G. C. Greubel, Nov 09 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved