[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A374140
a(n) is the permanent of the symmetric Toeplitz matrix of order n whose element (i,j) equals abs(i-j) or 1 if i = j.
3
1, 1, 2, 11, 117, 2083, 55482, 2063149, 102176977, 6490667261, 514651043730, 49787897503031, 5771746960693493, 789652404867861919, 125885777192807718730, 23129357587464094132601, 4851600400570400272371009, 1152232847579194480216644249, 307579355879152834353840187554
OFFSET
0,3
COMMENTS
Conjecture: a(n) is the minimal permanent of an n X n symmetric Toeplitz matrix having 1 on the main diagonal and all the integers 1, 2, ..., n-1 off-diagonal. - Stefano Spezia, Jul 05 2024
EXAMPLE
a(4) = 117:
[1, 1, 2, 3]
[1, 1, 1, 2]
[2, 1, 1, 1]
[3, 2, 1, 1]
MATHEMATICA
a[n_]:=Permanent[Table[If[i == j, 1, Abs[i - j]], {i, n}, {j, n}]]; Join[{1}, Array[a, 18]]
PROG
(PARI) a(n) = matpermanent(matrix(n, n, i, j, if (i==j, 1, abs(i-j)))); \\ Michel Marcus, Jun 29 2024
(Python)
from sympy import Matrix
def A374140(n): return Matrix(n, n, [abs(j-k) if j!=k else 1 for j in range(n) for k in range(n)]).per() if n else 1 # Chai Wah Wu, Jul 01 2024
CROSSREFS
Cf. A085807, A374067, A374139 (determinant).
Sequence in context: A269082 A378016 A304639 * A130222 A378092 A197993
KEYWORD
nonn
AUTHOR
Stefano Spezia, Jun 28 2024
STATUS
approved