[go: up one dir, main page]

login
A374035
a(n) = gcd(A328845(n), A328846(n)), where A328845 and A328846 are the first and second Fibonacci-based variants of the arithmetic derivative.
6
0, 0, 1, 1, 4, 5, 1, 1, 12, 6, 5, 1, 4, 1, 3, 5, 32, 1, 3, 1, 20, 1, 3, 1, 4, 50, 1, 27, 8, 1, 5, 1, 80, 1, 1, 25, 12, 1, 1, 1, 20, 1, 1, 1, 20, 15, 7, 1, 16, 14, 25, 1, 4, 1, 27, 20, 4, 1, 1, 1, 80, 1, 33, 3, 192, 10, 1, 1, 8, 1, 5, 1, 12, 1, 1, 25, 12, 1, 1, 1, 80, 108, 1, 1, 4, 15, 1, 1, 4, 1, 15, 1, 60, 1, 1, 10, 16
OFFSET
0,5
FORMULA
For all n>= 0, a(5*n) == 0 (mod 5). [There are multiples of 5 at other positions also]
PROG
(PARI)
A328845(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]*fibonacci(f[i, 1])/f[i, 1]));
A328846(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]*fibonacci(2+primepi(f[i, 1]))/f[i, 1]));
A374035(n) = gcd(A328845(n), A328846(n));
CROSSREFS
Cf. A374036, A374037 (indices of even terms), A374038 (of odd terms).
Sequence in context: A335862 A200385 A046576 * A016493 A101626 A195853
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 28 2024
STATUS
approved