[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A362906
Number of n element multisets of length 3 vectors over GF(2) that sum to zero.
2
1, 1, 8, 15, 50, 99, 232, 429, 835, 1430, 2480, 3978, 6372, 9690, 14640, 21318, 30789, 43263, 60280, 82225, 111254, 148005, 195416, 254475, 329095, 420732, 534496, 672452, 841160, 1043460, 1287648, 1577532, 1923465, 2330445, 2811240, 3372291, 4029178
OFFSET
0,3
COMMENTS
a(n) is the number of n X 3 binary matrices under row permutations and column complementations.
See A362905 for other interpretations.
LINKS
Index entries for linear recurrences with constant coefficients, signature (4, -2, -12, 17, 8, -28, 8, 17, -12, -2, 4, -1).
FORMULA
G.f.: (1 - 3*x + 6*x^2 - 3*x^3 + x^4)/((1 - x)^8*(1 + x)^4).
a(n) = binomial(n+7, 7)/8 for odd n;
a(n) = (binomial(n+7, 7) + 7*binomial(n/2+3, 3))/8 for even n.
EXAMPLE
The a(1) = 1 multiset is {000}.
The a(2) = 8 multisets are {000, 000}, {001, 001}, {010, 010}, {011, 011}, {100, 100}, {101, 101}, {110, 110}, {111, 111}.
The a(3) = 15 multisets are {000, 000, 000}, {000, 001, 001}, {000, 010, 010}, {000, 011, 011}, {000, 100, 100}, {000, 101, 101}, {000, 110, 110}, {000, 111, 111}, {001, 010, 011}, {001, 100, 101}, {001, 110, 111}, {010, 100, 110}, {010, 101, 111}, {011, 100, 111}, {011, 101, 110}.
MATHEMATICA
A362906[n_]:=(Binomial[n+7, 7]+If[EvenQ[n], 7Binomial[n/2+3, 3], 0])/8; Array[A362906, 50, 0] (* Paolo Xausa, Nov 18 2023 *)
PROG
(PARI) a(n) = (binomial(n+7, 7) + if(n%2==0, 7*binomial(n/2+3, 3)))/8
CROSSREFS
Column k=3 of A362905.
Cf. A006381.
Sequence in context: A367876 A216443 A331463 * A350442 A151792 A243295
KEYWORD
nonn,easy
AUTHOR
Andrew Howroyd, May 27 2023
STATUS
approved