[go: up one dir, main page]

login
A362312
Sierpinski triangle read by rows and filled in the greedy way such that each row, each diagonal and each antidiagonal contains distinct nonnegative values.
3
0, 1, 2, 2, 1, 3, 0, 2, 4, 4, 3, 5, 1, 0, 6, 6, 0, 1, 5, 7, 3, 4, 2, 5, 8, 6, 9, 8, 7, 9, 4, 3, 8, 10, 3, 4, 11, 11, 5, 6, 0, 1, 3, 4, 10, 12, 2, 5, 13, 13, 6, 4, 1, 0, 7, 5, 12, 14, 5, 6, 7, 2, 3, 9, 15, 15, 7, 8, 1, 9, 0, 2, 5, 6, 4, 10, 11, 12, 13, 14, 16, 16, 14
OFFSET
0,3
COMMENTS
This sequence is a variant of A296339.
The n-th row has A001316(n) terms, the first one being n and the last one being A361740(n).
LINKS
Rémy Sigrist, Table of n, a(n) for n = 0..6560 (rows for n = 0..255 flattened)
Rémy Sigrist, Colored representation of the first 512 rows (the hue is function of the terms, black pixels denote 0's, white pixels denote empty places)
Rémy Sigrist, C++ program
EXAMPLE
Sierpinski triangle begins (with dots denoting empty places):
0
1 2
2 . 1
3 0 2 4
4 . . . 3
5 1 . . 0 6
6 . 0 . 1 . 5
7 3 4 2 5 8 6 9
8 . . . . . . . 7
9 4 . . . . . . 3 8
10 . 3 . . . . . 4 . 11
11 5 6 0 . . . . 1 3 4 10
12 . . . 2 . . . 5 . . . 13
13 6 . . 4 1 . . 0 7 . . 5 12
14 . 5 . 6 . 7 . 2 . 3 . 9 . 15
15 7 8 1 9 0 2 5 6 4 10 11 12 13 14 16
PROG
(C++) See Links section.
CROSSREFS
Cf. A001316, A296339, A361740 (right border), A362313 (least values).
Sequence in context: A364493 A117046 A268192 * A333707 A077653 A077889
KEYWORD
nonn,tabf
AUTHOR
Rémy Sigrist, Apr 15 2023
STATUS
approved