[go: up one dir, main page]

login
A268192
Triangle read by rows: T(n,k) is the number of partitions of weight k among the complements of the partitions of n.
11
1, 2, 2, 1, 3, 0, 2, 2, 2, 0, 2, 1, 4, 0, 2, 1, 2, 0, 2, 2, 2, 2, 2, 0, 4, 0, 0, 2, 1, 4, 1, 2, 0, 6, 0, 2, 2, 1, 0, 2, 0, 2, 3, 2, 0, 6, 0, 2, 4, 4, 0, 2, 0, 2, 2, 0, 0, 2, 1, 4, 0, 6, 0, 2, 4, 5, 0, 6, 0, 4, 2, 0, 0, 4, 1, 0, 0, 2, 0, 2, 2, 4, 0, 2, 6, 5, 0, 6, 0, 8
OFFSET
1,2
COMMENTS
The complement of a partition p[1] >= p[2] >=...>= p[k] is p[1]-p[2], p[1]-p[3], ..., p[1]-p[k]. Its Ferrers board emerges naturally from the Ferrers board of the given partition. The weight of a partition of n is n.
Sum of entries in row n is A000041(n) (the partition numbers).
Apparently, number of entries in row n is A033638(n-1) = 1 + floor((n-1)^2/4).
T(n,0) = A000005(n) = number of divisors of n.
T(n,1) = A070824(n+1).
Sum(k*T(n,k),k>0) = A188814(n).
LINKS
FORMULA
The weight of the complement of a partition p is (number of parts of p)*(largest part of p) - weight of p.
For a given q, the Maple program yields the generating polynomial of row q.
EXAMPLE
Row 4 is 3,0,2; indeed, the complements of [4], [3,1], [2,2], [2,1,1], [1,1,1,1] are: empty, [2], empty, [1,1], empty; their weights are 0, 2, 0, 2, 0, respectively.
From Gus Wiseman, Sep 24 2019: (Start)
Triangle begins:
1
2
2 1
3 0 2
2 2 0 2 1
4 0 2 1 2 0 2
2 2 2 2 0 4 0 0 2 1
4 1 2 0 6 0 2 2 1 0 2 0 2
3 2 0 6 0 2 4 4 0 2 0 2 2 0 0 2 1
4 0 6 0 2 4 5 0 6 0 4 2 0 0 4 1 0 0 2 0 2
2 4 0 2 6 5 0 6 0 8 4 0 0 6 2 0 2 2 0 2 0 2 0 0 2 1
Row n = 8 counts the following partitions:
8 332 53 62 71 521 4211 611 5111
44 22211 422 2111111 32111 311111 41111
2222 431
11111111 3221
3311
221111
(End)
MAPLE
q := 10: with(combinat): a := proc (i, j) options operator, arrow: partition(i)[j] end proc: P[q] := 0: for j to numbpart(q) do P[q] := sort(P[q]+t^(nops(a(q, j))*max(a(q, j))-q)) end do: P[q] := P[q];
# second Maple program:
b:= proc(n, i, l) option remember; expand(`if`(n=0 or i=1,
x^(`if`(l=0, 0, n*(l-i))), b(n, i-1, l)+`if`(i>n, 0,
x^(`if`(l=0, 0, l-i))*b(n-i, i, `if`(l=0, i, l)))))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2, 0)):
seq(T(n), n=1..15); # Alois P. Heinz, Feb 12 2016
MATHEMATICA
b[n_, i_, l_] := b[n, i, l] = Expand[If[n == 0 || i == 1, x^(If[l == 0, 0, n*(l - i)]), b[n, i - 1, l] + If[i > n, 0, x^(If[l == 0, 0, l - i])*b[n - i, i, If[l == 0, i, l]]]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, n, 0]]; Table[T[n], {n, 1, 15}] // Flatten (* Jean-François Alcover, Dec 22 2016, after Alois P. Heinz *)
Table[Length[Select[IntegerPartitions[n], Max[#]*Length[#]-n==k&]], {n, 1, 11}, {k, 0, Floor[(n-1)/2]*Ceiling[(n-1)/2]}] (* Gus Wiseman, Sep 24 2019 *)
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Feb 12 2016
STATUS
approved