[go: up one dir, main page]

login
A362020
Nonnegative numbers k not ending in 0 such that, in decimal representation, the subsequence of digits of k^2 occupying an odd position is equal to the digits of k.
0
1, 5, 6, 11, 76, 105, 501, 505, 506, 605, 756, 826, 1001, 5941, 10005, 10505, 12731, 13921, 50001, 50005, 50006, 50105, 50501, 50505, 50506, 50605, 60005, 60505, 88705, 100001, 118905, 364231, 592421, 594941, 684006, 1000005, 1000505, 1050005, 1050505, 1355941
OFFSET
1,2
COMMENTS
Subsequence of A326418. No term starts with the digit 2.
PROG
(Python)
from itertools import count, islice
def A362020_gen(startvalue=0): # generator of terms >= startvalue
return filter(lambda n:n%10 and n==int(''.join((s:=str(n**2))[len(s)&1^1::2])), count(max(startvalue, 0)))
A362020_list = list(islice(A362020_gen(), 50))
CROSSREFS
Cf. A326418.
Sequence in context: A332523 A041227 A042183 * A328544 A041939 A177714
KEYWORD
nonn,base
AUTHOR
Chai Wah Wu, Apr 04 2023
STATUS
approved