[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A361148
a(n) = phi(n)^4.
6
1, 1, 16, 16, 256, 16, 1296, 256, 1296, 256, 10000, 256, 20736, 1296, 4096, 4096, 65536, 1296, 104976, 4096, 20736, 10000, 234256, 4096, 160000, 20736, 104976, 20736, 614656, 4096, 810000, 65536, 160000, 65536, 331776, 20736, 1679616, 104976, 331776, 65536, 2560000
OFFSET
1,3
COMMENTS
In general, for k>=1, Sum_{m=1..n} phi(m)^k ~ c(k) * n^(k+1) / (k+1).
Table of the first twenty constants c(k):
c1 = 0.6079271018540266286632767792583658334261526480334792930736...
c2 = 0.4282495056770944402187657075818235461212985133559361440319...
c3 = 0.3371878737915899719616928161521582449491541277581639388802...
c4 = 0.2862564715115608911732883400866386479560747005250468681615...
c5 = 0.2550316684059564308661179534476184539887434047229867871927...
c6 = 0.2342690874743831026992085481001750961630443094403694748409...
c7 = 0.2194845388428573186801010214226853865762414525869501954550...
c8 = 0.2083553180392308846240883587603960475166426933863125773262...
c9 = 0.1996016550942289223053750541784521301740825495040856984950...
c10 = 0.1924764951305819663569723926235916851341834741671794581256...
c11 = 0.1865198318046079731059147989571847359151227252097897755685...
c12 = 0.1814343147960482243026212589426877406632573154701351352790...
c13 = 0.1770192204728143035012153190352692532613146649385520287635...
c14 = 0.1731338036872585521607716180505314246174563305338731073703...
c15 = 0.1696760784770144194638735708052066949428247152918280392147...
c16 = 0.1665700322333281768929516390245288052095235102037486400080...
c17 = 0.1637576294807392765019551841269187995536332906534705685240...
c18 = 0.1611936368897236567526886186599877745065426644021588804182...
c19 = 0.1588421683609925408830108209202958349394621277940566066627...
c20 = 0.1566743130878534775247182243921577941535243896576096188342...
c1 = A059956 = 6/Pi^2, c2 = A065464.
Conjecture: c(k)*log(k) converges to a constant (around 0.534).
FORMULA
Multiplicative with a(p^e) = (p-1)^4 * p^(4*e-4).
Dirichlet g.f.: zeta(s-4) * Product_{primes p} (1 + 1/p^s - 4/p^(s-1) + 6/p^(s-2) - 4/p^(s-3)).
Sum_{k=1..n} a(k) ~ c * n^5 / 5, where c = Product_{primes p} (1 - 4/p^2 + 6/p^3 - 4/p^4 + 1/p^5) = 0.286256471511560891173288340086638647956074700525046868161...
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + p^4/((p-1)^4*(p^4-1))) = 2.20815077889083518654... . - Amiram Eldar, Sep 01 2023
MATHEMATICA
Table[EulerPhi[n]^4, {n, 1, 50}]
PROG
(PARI) a(n) = eulerphi(n)^4;
(PARI) for(n=1, 100, print1(direuler(p=2, n, (1 + X - 4*p*X + 6*p^2*X - 4*p^3*X) / (1 - p^4*X))[n], ", "))
KEYWORD
nonn,easy,mult
AUTHOR
Vaclav Kotesovec, Mar 02 2023
STATUS
approved