OFFSET
0,1
COMMENTS
Sum_{n <= x} A189021(n) ~ kx, where k is this constant. - Charles R Greathouse IV, Jan 24 2018
The probability that a number chosen at random is squarefree and coprime to another randomly chosen random (see Schroeder, 2009). - Amiram Eldar, May 23 2020, corrected Aug 04 2020
REFERENCES
Manfred Schroeder, Number Theory in Science and Communication, 5th edition, Springer, 2009, page 59.
LINKS
R. J. Mathar, Hardy-Littlewood Constants Embedded into Infinite Products over All Positive Integers, arXiv:0903.2514 [math.NT], 2009-2011; Equation (116).
G. Niklasch, Some number theoretical constants: 1000-digit values. [Cached copy]
Eric Weisstein's World of Mathematics, Carefree Couple.
FORMULA
Equals (6/Pi^2)^2 * Product_{p prime} (1 + 1/(p^3 + p^2 - p - 1)) = 1.1587609... * (6/Pi^2)^2. - Amiram Eldar, May 23 2020
Equals lim_{m->oo} (1/m) * Sum_{k==1..m} (phi(k)/k)^2, where phi is the Euler totient function (A000010). - Amiram Eldar, Mar 12 2021
EXAMPLE
0.428249505677094440218765707581823546...
MATHEMATICA
$MaxExtraPrecision = 800; digits = 98; terms = 2000; LR = Join[{0, 0}, LinearRecurrence[{-2, 0, 1}, {-2, 3, -6}, terms+10]]; r[n_Integer] := LR[[n]]; (6/Pi^2)*Exp[NSum[r[n]*(PrimeZetaP[n-1]/(n-1)), {n, 3, terms}, NSumTerms -> terms, WorkingPrecision -> digits+10, Method -> "AlternatingSigns"]] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Apr 16 2016 *)
PROG
(PARI) prodeulerrat(1 - (2*p-1)/p^3) \\ Amiram Eldar, Mar 12 2021
CROSSREFS
KEYWORD
cons,nonn
AUTHOR
N. J. A. Sloane, Nov 19 2001
EXTENSIONS
More digits from Vaclav Kotesovec, Dec 18 2019
STATUS
approved