[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A360752
Expansion of Sum_{k>0} (x * (1 + (2 * x)^k))^k.
0
1, 3, 1, 9, 1, 41, 1, 65, 193, 161, 1, 2433, 1, 897, 10241, 18433, 1, 66049, 1, 403457, 344065, 22529, 1, 7127041, 5242881, 106497, 9437185, 73629697, 1, 332890113, 1, 940572673, 230686721, 2228225, 9395240961, 18828754945, 1, 9961473, 5234491393, 429517701121, 1
OFFSET
1,2
FORMULA
a(n) = Sum_{d|n} 2^(n-d) * binomial(d,n/d-1).
If p is an odd prime, a(p) = 1.
MATHEMATICA
a[n_] := DivisorSum[n, 2^(n-#) * Binomial[#, n/# - 1] &]; Array[a, 40] (* Amiram Eldar, Aug 02 2023 *)
PROG
(PARI) my(N=50, x='x+O('x^N)); Vec(sum(k=1, N, (x*(1+(2*x)^k))^k))
(PARI) a(n) = sumdiv(n, d, 2^(n-d)*binomial(d, n/d-1));
CROSSREFS
Cf. A360733.
Sequence in context: A303552 A130599 A157674 * A063467 A223140 A021762
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Feb 19 2023
STATUS
approved