[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A360755
Expansion of (1/2) * Sum_{k>0} (2 * x * (1 + x^k))^k.
1
1, 3, 4, 12, 16, 46, 64, 160, 268, 592, 1024, 2292, 4096, 8640, 16544, 33824, 65536, 133856, 262144, 529576, 1049920, 2108416, 4194304, 8417408, 16777296, 33607680, 67118080, 134334656, 268435456, 537140208, 1073741824, 2148015104, 4295023616, 8591048704
OFFSET
1,2
FORMULA
a(n) = Sum_{d|n} 2^(d-1) * binomial(d,n/d-1).
If p is an odd prime, a(p) = 2^(p-1).
MATHEMATICA
a[n_] := DivisorSum[n, 2^(#-1) * Binomial[#, n/# - 1] &]; Array[a, 35] (* Amiram Eldar, Aug 02 2023 *)
PROG
(PARI) my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, (2*x*(1+x^k))^k)/2)
(PARI) a(n) = sumdiv(n, d, 2^(d-1)*binomial(d, n/d-1));
CROSSREFS
Sequence in context: A122757 A280650 A282458 * A348949 A084221 A142866
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Feb 19 2023
STATUS
approved