[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A368885
The number of unitary divisors of n that are squares of a squarefree number (A062503).
2
1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1
OFFSET
1,4
COMMENTS
First differs from A294932 at n = 32.
The largest of these divisors is A368884(n).
LINKS
FORMULA
Multiplicative with a(p^e) = 2 if e = 2, and 1 otherwise.
a(n) >= 1, with equality if and only if n is in A337050.
a(n) <= A034444(n), with equality if and only if n is in A062503.
Dirichlet g.f.: zeta(s) * Product_{p prime} (1 + 1/p^(2*s) - 1/p^(3*s)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} (1 + 1/p^2 - 1/p^3) = 1.30596827416754083231... .
MATHEMATICA
f[p_, e_] := If[e == 2, 2, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
PROG
(PARI) a(n) = vecprod(apply(x->if(x==2, 2, 1), factor(n)[, 2]));
(Python)
from sympy import factorint
def A368885(n): return 1<<sum(1 for e in factorint(n).values() if e==2) # Chai Wah Wu, Jan 09 2024
CROSSREFS
KEYWORD
nonn,easy,mult
AUTHOR
Amiram Eldar, Jan 09 2024
STATUS
approved