Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #41 Dec 27 2023 18:00:01
%S 1,1,1,1,1,2,2,1,3,5,4,2,1,4,9,12,12,8,6,1,5,14,25,34,36,36,28,18,6,1,
%T 6,20,44,74,100,122,132,132,108,78,36,24,1,7,27,70,139,224,318,408,
%U 490,534,536,468,378,258,162,96,24,1,8,35,104,237,440,710,1032,1398,1764,2094,2296,2364,2220,1962,1584,1242,816,528,192,120
%N Number T(n,k) of partitions of [n] whose sum of block maxima minus block minima gives k, triangle T(n,k), n>=0, 0<=k<=A002620(n), read by rows.
%H Alois P. Heinz, <a href="/A368338/b368338.txt">Rows n = 0..33, flattened</a>
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_of_a_set">Partition of a set</a>
%F Sum_{k=0..A002620(n)} k * T(n,k) = A367850(n).
%F T(n,A002620(n)) = A081123(n+1).
%e T(4,0) = 1: 1|2|3|4.
%e T(4,1) = 3: 12|3|4, 1|23|4, 1|2|34.
%e T(4,2) = 5: 123|4, 12|34, 13|2|4, 1|234, 1|24|3.
%e T(4,3) = 4: 1234, 124|3, 134|2, 14|2|3.
%e T(4,4) = 2: 13|24, 14|23.
%e T(5,5) = 8: 124|35, 125|34, 13|245, 13|25|4, 145|23, 15|23|4, 14|2|35, 15|2|34.
%e T(5,6) = 6: 134|25, 135|24, 14|235, 15|234, 14|25|3, 15|24|3.
%e T(6,9) = 6: 14|25|36, 14|26|35, 15|24|36, 16|24|35, 15|26|34, 16|25|34.
%e Triangle T(n,k) begins:
%e 1;
%e 1;
%e 1, 1;
%e 1, 2, 2;
%e 1, 3, 5, 4, 2;
%e 1, 4, 9, 12, 12, 8, 6;
%e 1, 5, 14, 25, 34, 36, 36, 28, 18, 6;
%e 1, 6, 20, 44, 74, 100, 122, 132, 132, 108, 78, 36, 24;
%e ...
%p b:= proc(n, m) option remember; `if`(n=0, x^add(-i, i=m), add(
%p b(n-1, subs(j=n, m)), j=m)+expand(b(n-1, {m[], n})*x^n))
%p end:
%p T:= (n, k)-> coeff(b(n, {}), x, k):
%p seq(seq(T(n, k), k=0..(h-> h*(n-h))(iquo(n, 2))), n=0..10);
%p # second Maple program:
%p b:= proc(n, s) option remember; `if`(n=0, 1, (k-> `if`(n>k,
%p b(n-1, s)*(k+1), 0)+`if`(n>k+1, b(n-1, {s[], n}), 0)+
%p add(expand(x^(h-n)*b(n-1, s minus {h})), h=s))(nops(s)))
%p end:
%p T:= (n, k)-> coeff(b(n, {}), x, k):
%p seq(seq(T(n, k), k=0..floor(n^2/4)), n=0..10);
%Y Columns k=0..3 give: A000012, A001477(n-1), A000096(n-2), A000297(n-4).
%Y Row sums give A000110.
%Y Cf. A002620, A081123, A367450, A367850, A368401.
%K nonn,tabf
%O 0,6
%A _Alois P. Heinz_, Dec 21 2023