[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A368338
Number T(n,k) of partitions of [n] whose sum of block maxima minus block minima gives k, triangle T(n,k), n>=0, 0<=k<=A002620(n), read by rows.
5
1, 1, 1, 1, 1, 2, 2, 1, 3, 5, 4, 2, 1, 4, 9, 12, 12, 8, 6, 1, 5, 14, 25, 34, 36, 36, 28, 18, 6, 1, 6, 20, 44, 74, 100, 122, 132, 132, 108, 78, 36, 24, 1, 7, 27, 70, 139, 224, 318, 408, 490, 534, 536, 468, 378, 258, 162, 96, 24, 1, 8, 35, 104, 237, 440, 710, 1032, 1398, 1764, 2094, 2296, 2364, 2220, 1962, 1584, 1242, 816, 528, 192, 120
OFFSET
0,6
LINKS
FORMULA
Sum_{k=0..A002620(n)} k * T(n,k) = A367850(n).
T(n,A002620(n)) = A081123(n+1).
EXAMPLE
T(4,0) = 1: 1|2|3|4.
T(4,1) = 3: 12|3|4, 1|23|4, 1|2|34.
T(4,2) = 5: 123|4, 12|34, 13|2|4, 1|234, 1|24|3.
T(4,3) = 4: 1234, 124|3, 134|2, 14|2|3.
T(4,4) = 2: 13|24, 14|23.
T(5,5) = 8: 124|35, 125|34, 13|245, 13|25|4, 145|23, 15|23|4, 14|2|35, 15|2|34.
T(5,6) = 6: 134|25, 135|24, 14|235, 15|234, 14|25|3, 15|24|3.
T(6,9) = 6: 14|25|36, 14|26|35, 15|24|36, 16|24|35, 15|26|34, 16|25|34.
Triangle T(n,k) begins:
1;
1;
1, 1;
1, 2, 2;
1, 3, 5, 4, 2;
1, 4, 9, 12, 12, 8, 6;
1, 5, 14, 25, 34, 36, 36, 28, 18, 6;
1, 6, 20, 44, 74, 100, 122, 132, 132, 108, 78, 36, 24;
...
MAPLE
b:= proc(n, m) option remember; `if`(n=0, x^add(-i, i=m), add(
b(n-1, subs(j=n, m)), j=m)+expand(b(n-1, {m[], n})*x^n))
end:
T:= (n, k)-> coeff(b(n, {}), x, k):
seq(seq(T(n, k), k=0..(h-> h*(n-h))(iquo(n, 2))), n=0..10);
# second Maple program:
b:= proc(n, s) option remember; `if`(n=0, 1, (k-> `if`(n>k,
b(n-1, s)*(k+1), 0)+`if`(n>k+1, b(n-1, {s[], n}), 0)+
add(expand(x^(h-n)*b(n-1, s minus {h})), h=s))(nops(s)))
end:
T:= (n, k)-> coeff(b(n, {}), x, k):
seq(seq(T(n, k), k=0..floor(n^2/4)), n=0..10);
CROSSREFS
Columns k=0..3 give: A000012, A001477(n-1), A000096(n-2), A000297(n-4).
Row sums give A000110.
Sequence in context: A228352 A303911 A205575 * A344583 A349414 A257006
KEYWORD
nonn,tabf
AUTHOR
Alois P. Heinz, Dec 21 2023
STATUS
approved