[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A367596
The denominators of a series that converges to log(2) obtained using Whittaker's root series formula.
1
1, 3, 39, 975, 40575, 844501, 73824373, 25814174655, 3868475107935, 724655165594943, 165910226233669599, 15194097535426090645, 4933425635511640104565, 5606480381963363479902783, 2450522415523358900846598879, 1224105922303030827661963930815, 693005978151926719613680243125855
OFFSET
1,2
COMMENTS
The Whittaker's root series formula is applied to -1 + x + x^2/2! + x^3/3! + x^4/4! + x^5/5! + x^6/6! + ..., which is the Taylor expansion of e^x with the first coefficient having a negative sign (-1 instead of 1). We obtain log(2) = 1 - 1/3 + 1/39 + 1/975 - 7/40575 - 13/844501 + 115/73824373 + 5657/25814174655 .... The sequence is formed by the denominators of the series.
FORMULA
a(n) is the denominator of the simplified fraction -(-1)^n*det ToeplitzMatrix((c(2),c(1),c(0),0,0,...,0),(c(2),c(3),c(4),...,c(n+1)))/(det ToeplitzMatrix((c(1),c(0),0,...,0),(c(1),c(2),c(3),...,c(n)))*det ToeplitzMatrix((c(1),c(0),0,...,0),(c(1),c(2),c(3),...,c(n+1)))), where c(0)=-1, c(1)=1, c(2)=1/2!, c(3)=1/3!, c(4)=1/4!, c(n)=1/n!.
EXAMPLE
a(1) is the denominator of -(-1)/1 = 1/1.
a(2) is the denominator of -(-1)^2*(1/2!)/(1*det((1,1/2!),(-1,1))) = -(1/2)/(1*(3/2)) = -1/3.
a(3) is the denominator of -(-1)^3*det((1/2!,1/3!),(1,1/2!))/(det((1,1/2!),(-1,1))*det((1,1/2!,1/3!),(-1,1,1/2!),(0,-1,1))) = (1/12)/((3/2)*(13/6)) = 1/39.
MATHEMATICA
c[k_] := If[k < 0, 0, SeriesCoefficient[Exp[x] - 2, {x, 0, k}]]; Join[{1}, Table[(-1)^n*Det[ToeplitzMatrix[Table[c[3 - j], {j, 1, n}], Table[c[j + 1], {j, 1, n}]]] / (Det[ToeplitzMatrix[Table[c[2 - j], {j, 1, n}], Table[c[j], {j, 1, n}]]] * Det[ToeplitzMatrix[Table[c[2 - j], {j, 1, n + 1}], Table[c[j], {j, 1, n + 1}]]]), {n, 1, 20}] // Denominator] (* Vaclav Kotesovec, Nov 26 2023 *)
CROSSREFS
Cf. A002162, A365594, A367597 (numerators).
Sequence in context: A326271 A276964 A378232 * A353739 A274573 A278750
KEYWORD
nonn,frac
AUTHOR
Raul Prisacariu, Nov 24 2023
EXTENSIONS
More terms from Vaclav Kotesovec, Nov 26 2023
STATUS
approved