[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A278750
E.g.f. S(x) = Integral C(x)*D(x)^2 dx, where C(x)^2 - S(x)^2 = 1 and 3*C(x)^2 - 2*D(x)^3 = 1.
4
1, 3, 39, 1137, 58221, 4615623, 523484019, 80413567317, 16072230046041, 4053246141598443, 1258826280827924799, 472083799922946212697, 210327336751547848824261, 109812853605044722106919663, 66408636977597058929358851979, 46050900932480002492822649518077, 36298045342567148350546493472175281, 32270728864033978097224807327165446483
OFFSET
0,2
LINKS
FORMULA
E.g.f. S(x) and related series C(x) and D(x) satisfy:
(1) S(x) = Integral C(x)*D(x)^2 dx,
(2) C(x) = 1 + Integral S(x)*D(x)^2 dx,
(3) D(x) = 1 + Integral S(x)*C(x) dx,
(4) C(x)^2 - S(x)^2 = 1,
(5) 3*C(x)^2 - 2*D(x)^3 = 1,
(6) 2*D(x)^3 - 3*S(x)^2 = 2,
(7) C(x) + S(x) = exp( Integral D(x)^2 dx ).
EXAMPLE
E.g.f.: S(x) = x + 3*x^3/3! + 39*x^5/5! + 1137*x^7/7! + 58221*x^9/9! + 4615623*x^11/11! + 523484019*x^13/13! + 80413567317*x^15/15! + 16072230046041*x^17/17! + 4053246141598443*x^19/19! +...
and related series
C(x) = 1 + x^2/2! + 9*x^4/4! + 189*x^6/6! + 7521*x^8/8! + 487521*x^10/10! + 46747449*x^12/12! + 6218441469*x^14/14! + 1095843999681*x^16/16! + 247107215918241*x^18/18! +...
D(x) = 1 + x^2/2! + 6*x^4/4! + 114*x^6/6! + 4224*x^8/8! + 258696*x^10/10! + 23685696*x^12/12! + 3030422544*x^14/14! + 516368179584*x^16/16! + 113039478326016*x^18/18! +...
satisfy
C(x)^2 - S(x)^2 = 1,
3*C(x)^2 - 2*D(x)^3 = 1.
Related expansions.
C(x)^2 = 1 + 2*x^2/2! + 24*x^4/4! + 648*x^6/6! + 31296*x^8/8! + 2366352*x^10/10! + 257865984*x^12/12! + 38266414848*x^14/14! + 7419295374336*x^16/16! + 1820980419409152*x^18/18! +...
D(x)^2 = 1 + 2*x^2/2! + 18*x^4/4! + 408*x^6/6! + 17352*x^8/8! + 1184832*x^10/10! + 118618128*x^12/12! + 16371203328*x^14/14! + 2979295540992*x^16/16! + 691248148134912*x^18/18! +...
D(x)^3 = 1 + 3*x^2/2! + 36*x^4/4! + 972*x^6/6! + 46944*x^8/8! + 3549528*x^10/10! + 386798976*x^12/12! + 57399622272*x^14/14! + 11128943061504*x^16/16! + 2731470629113728*x^18/18! +...
such that 2*D(x)^3 - 3*S(x)^2 = 2.
PROG
(PARI) {a(n) = my(S=x, C=1, D=1); for(i=1, 2*n, S = intformal(C*(D^2 +O(x^(2*n+2)))); C = 1 + intformal(S*(D^2 +O(x^(2*n+2)))); D = 1 + intformal(S*C); ); (2*n+1)!*polcoeff(S, 2*n+1)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Cf. A278751 (C(x)), A278752 (D(x)), A278749 (C(x) + S(x)).
Sequence in context: A367596 A353739 A274573 * A082159 A187536 A369945
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 27 2016
STATUS
approved