[go: up one dir, main page]

login
A366488
a(n) = (n^11 - n)/11.
5
0, 0, 186, 16104, 381300, 4438920, 32981550, 179756976, 780903144, 2852823600, 9090909090, 25937424600, 67546215516, 162923672184, 368142288150, 786341441760, 1599289640400, 3115626937056, 5842582734474, 10590023536200, 18618181818180, 31843409140200, 53119845582846, 86619068901264, 138334649379000, 216744162819600
OFFSET
0,3
COMMENTS
If p is a prime, (n^p-n)/p is an integer by Fermat's Little Theorem. For p = 2, 3, 5, 7, ..., this gives A000217, A007290, A208536, A208537, this sequence, A366489, A366490, A366491.
LINKS
Jack Jeffries, Differentiating by prime numbers, Notices Amer. Math. Soc., 70:11 (2023), 1772-1779.
Index entries for linear recurrences with constant coefficients, signature (12,-66,220,-495,792,-924,792,-495,220,-66,12,-1).
FORMULA
a(n) == 0 (mod 6). - Hugo Pfoertner, Nov 14 2023
MATHEMATICA
A366488[n_]:=(n^11-n)/11; Array[A366488, 30, 0] (* Paolo Xausa, Nov 14 2023 *)
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Nov 13 2023
STATUS
approved