OFFSET
0,3
COMMENTS
By analogy with the Copeland-Erdős constant 0.2357111317... given by concatenating the base-10 expansions of consecutive entries of the sequence of prime numbers, the so-called "prime-counting Copeland-Erdős constant" 0.0122...9101011... is defined similarly, but with the use of the prime-counting function in place of the prime number sequence.
LINKS
Michael De Vlieger, Table of n, a(n) for n = 0..10000
John M. Campbell, The prime-counting Copeland-Erdős constant, arXiv:2309.13520 [math.NT], 2023.
Eric Weisstein's World of Mathematics, Consecutive Number Sequences.
Eric Weisstein's World of Mathematics, Prime-Counting Concatenation Constant.
EXAMPLE
0.012233444455666677888899999910101111...
The prime-counting function evaluated at 1 is 0, so a(0) = 0, and the first digit after the decimal point of the prime-counting Copeland-Erdős constant is 0.
MATHEMATICA
Flatten[Table[IntegerDigits[PrimePi[n]], {n, 1, 57}]]
Flatten[IntegerDigits[PrimePi[Range[57]]]] (* Eric W. Weisstein, Jun 07 2024 *)
PROG
(PARI) concat(0, concat(vector(50, i, digits(primepi(i))))) \\ Michel Marcus, Nov 04 2023
CROSSREFS
KEYWORD
AUTHOR
John M. Campbell, Sep 26 2023
STATUS
approved