[go: up one dir, main page]

login
A070549
a(n) = Cardinality{ k in range 1 <= k <= n such that Moebius(k) = -1 }.
5
0, 1, 2, 2, 3, 3, 4, 4, 4, 4, 5, 5, 6, 6, 6, 6, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 11, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 14, 15, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 19, 19, 20, 20, 20, 20, 20, 21, 22, 22, 22, 23, 24, 24, 25, 25, 25, 25, 25, 26
OFFSET
1,3
COMMENTS
mu(k)=-1 if k is the product of an odd number of distinct primes. See A057627 for mu(k)=0.
LINKS
FORMULA
From Amiram Eldar, Oct 01 2023: (Start)
a(n) = (A013928(n+1) - A002321(n))/2.
a(n) = A013928(n+1) - A070548(n).
a(n) = A070548(n) - A002321(n).
a(n) ~ (3/Pi^2) * n. (End)
MAPLE
ListTools:-PartialSums([seq(-min(numtheory:-mobius(n), 0), n=1..100)]); # Robert Israel, Jan 08 2018
MATHEMATICA
a[n_]:=Sum[Boole[MoebiusMu[k]==-1], {k, n}]; Array[a, 78] (* Stefano Spezia, Jan 30 2023 *)
PROG
(PARI) for(n=1, 150, print1(sum(i=1, n, if(moebius(i)+1, 0, 1)), ", "))
CROSSREFS
Partial sums of A252233.
Sequence in context: A366033 A000720 A230980 * A255574 A283992 A074796
KEYWORD
easy,nonn
AUTHOR
Benoit Cloitre, May 02 2002
STATUS
approved