[go: up one dir, main page]

login
A353364
Inverse Möbius transform of A332814.
2
0, 1, -1, 1, 1, -1, -1, 2, -1, 2, 1, -2, -1, -1, 1, 2, 1, 0, -1, 3, -2, 2, 1, -2, 1, -1, -2, -2, -1, 1, 1, 3, 1, 2, -1, -1, -1, -1, -2, 4, 1, -2, -1, 3, 2, 2, 1, -3, -1, 3, 1, -2, -1, -2, 2, -2, -2, -1, 1, 2, -1, 2, -3, 3, -1, 1, 1, 3, 1, -2, -1, 0, 1, -1, 0, -2, 1, -2, -1, 5, -2, 2, 1, -4, 2, -1, -2, 4, -1, 3, -2, 3
OFFSET
1,8
FORMULA
a(n) = Sum_{d|n} A332814(d).
For all n >= 1, a(A003961(n)) = -a(n), a(A000040(n)) = ((-1)^(n-1)).
PROG
(PARI)
A156552(n) = {my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ From A156552
A332814(n) = { my(u=A156552(n)%3); if(2==u, -1, u); };
A353364(n) = sumdiv(n, d, A332814(d));
CROSSREFS
KEYWORD
sign
AUTHOR
Antti Karttunen, Apr 15 2022
STATUS
approved