[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A353335
Dirichlet inverse of A353420.
3
1, -1, -2, 0, -3, 2, -4, 0, -5, 3, -5, 0, -6, 4, 0, 0, -7, 5, -8, 0, -3, 5, -10, 0, -8, 6, -14, 0, -11, 0, -13, 0, -2, 7, -2, 0, -14, 8, -5, 0, -15, 3, -16, 0, 7, 10, -18, 0, -25, 8, -4, 0, -20, 14, -1, 0, -7, 11, -21, 0, -23, 13, 8, 0, -4, 2, -24, 0, -9, 2, -25, 0, -27, 14, 4, 0, -8, 5, -28, 0, -52, 15, -30, 0, -3
OFFSET
1,3
FORMULA
a(1) = 1; a(n) = -Sum_{d|n, d < n} A353420(n/d) * a(d).
a(n) = A353336(n) - A353420(n).
PROG
(PARI)
up_to = 65537;
DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(d<n, v[n/d]*u[d], 0)))); (u) }; \\ Compute the Dirichlet inverse of the sequence given in input vector v (correctly!)
A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
A126760(n) = {n&&n\=3^valuation(n, 3)<<valuation(n, 2); n%3+n\6*2}; \\ From A126760
v353335 = DirInverseCorrect(vector(up_to, n, A353420(n)));
A353335(n) = v353335[n];
CROSSREFS
KEYWORD
sign
AUTHOR
Antti Karttunen, Apr 20 2022
STATUS
approved