[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A359399
a(1) = 1; a(n) = Sum_{k=2..n} k * a(floor(n/k)).
1
1, 2, 5, 11, 16, 31, 38, 62, 80, 105, 116, 194, 207, 242, 287, 383, 400, 526, 545, 675, 738, 793, 816, 1200, 1250, 1315, 1423, 1605, 1634, 1979, 2010, 2394, 2493, 2578, 2683, 3475, 3512, 3607, 3724, 4364, 4405, 4888, 4931, 5217, 5577, 5692, 5739, 7563, 7661, 8011
OFFSET
1,2
LINKS
FORMULA
G.f. A(x) satisfies A(x) = x + (1/(1 - x)) * Sum_{k>=2} k * (1 - x^k) * A(x^k).
PROG
(Python)
from functools import lru_cache
@lru_cache(maxsize=None)
def A359399(n):
if n <= 1:
return 1
c, j = 0, 2
k1 = n//j
while k1 > 1:
j2 = n//k1 + 1
c += (j2*(j2-1)-j*(j-1)>>1)*A359399(k1)
j, k1 = j2, n//j2
return c+(n*(n+1)-(j-1)*j>>1) # Chai Wah Wu, Mar 31 2023
CROSSREFS
Cf. A022825.
Sequence in context: A024917 A081402 A281023 * A118660 A009770 A132121
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 31 2023
STATUS
approved