[go: up one dir, main page]

login
A357887
Triangle read by rows: T(n,k) = number of circuits of length k in the complete undirected graph on n labeled vertices, for n >= 1 and k = 0 .. n(n-1)/2.
10
1, 2, 0, 3, 0, 0, 2, 4, 0, 0, 8, 6, 0, 0, 5, 0, 0, 20, 30, 24, 60, 120, 0, 0, 264, 6, 0, 0, 40, 90, 144, 480, 1440, 2340, 3840, 9504, 15840, 11160, 0, 0, 0, 7, 0, 0, 70, 210, 504, 2100, 8280, 23940, 68880, 217224, 594720, 1339800, 2983680, 6482880, 10190880, 12136320, 24192000, 39621120, 0, 0, 129976320
OFFSET
1,2
LINKS
Max Alekseyev, Table of m, a(m) for m = 1..129 (rows n=1..9)
FORMULA
For k >= 1, T(n,k) = A357885(n,k) * n / k.
Last nonzero element in row n:
T(2n+1,n(2n+1)) = A135388(n) = A350028(2n+1) = A007082(n) * (n-1)!^(2*n+1);
T(2n,2n(n-1)) = A350028(2n) * (2n-1)!!.
EXAMPLE
Triangle T(n,k) starts with:
n=1: 1,
n=2: 2, 0,
n=3: 3, 0, 0, 2,
n=4: 4, 0, 0, 8, 6, 0, 0,
n=5: 5, 0, 0, 20, 30, 24, 60, 120, 0, 0, 264,
...
CROSSREFS
KEYWORD
tabf,nonn,walk
AUTHOR
Max Alekseyev, Oct 19 2022
STATUS
approved