# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a357887 Showing 1-1 of 1 %I A357887 #17 Oct 21 2022 14:31:54 %S A357887 1,2,0,3,0,0,2,4,0,0,8,6,0,0,5,0,0,20,30,24,60,120,0,0,264,6,0,0,40, %T A357887 90,144,480,1440,2340,3840,9504,15840,11160,0,0,0,7,0,0,70,210,504, %U A357887 2100,8280,23940,68880,217224,594720,1339800,2983680,6482880,10190880,12136320,24192000,39621120,0,0,129976320 %N A357887 Triangle read by rows: T(n,k) = number of circuits of length k in the complete undirected graph on n labeled vertices, for n >= 1 and k = 0 .. n(n-1)/2. %H A357887 Max Alekseyev, Table of m, a(m) for m = 1..129 (rows n=1..9) %F A357887 For k >= 1, T(n,k) = A357885(n,k) * n / k. %F A357887 Last nonzero element in row n: %F A357887 T(2n+1,n(2n+1)) = A135388(n) = A350028(2n+1) = A007082(n) * (n-1)!^(2*n+1); %F A357887 T(2n,2n(n-1)) = A350028(2n) * (2n-1)!!. %e A357887 Triangle T(n,k) starts with: %e A357887 n=1: 1, %e A357887 n=2: 2, 0, %e A357887 n=3: 3, 0, 0, 2, %e A357887 n=4: 4, 0, 0, 8, 6, 0, 0, %e A357887 n=5: 5, 0, 0, 20, 30, 24, 60, 120, 0, 0, 264, %e A357887 ... %Y A357887 Cf. A007082, A135388, A232545, A350028, A356366 (row sums), A357855, A357856, A357857, A357885, A357886. %K A357887 tabf,nonn,walk %O A357887 1,2 %A A357887 _Max Alekseyev_, Oct 19 2022 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE