[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A357598
Expansion of e.g.f. sinh(2 * (exp(x)-1)) / 2.
8
0, 1, 1, 5, 25, 117, 601, 3509, 22457, 153141, 1105561, 8453557, 68339833, 581495605, 5184047961, 48259748533, 468040609593, 4719817792565, 49396003390489, 535526127566773, 6004124908829177, 69509047405180213, 829801009239621849, 10202835010223731893
OFFSET
0,4
LINKS
Eric Weisstein's World of Mathematics, Bell Polynomial.
FORMULA
a(n) = Sum_{k=0..floor((n-1)/2)} 4^k * Stirling2(n,2*k+1).
a(n) = ( Bell_n(2) - Bell_n(-2) )/4, where Bell_n(x) is n-th Bell polynomial.
a(n) = 0; a(n) = Sum_{k=0..n-1} binomial(n-1, k) * A065143(k).
PROG
(PARI) my(N=30, x='x+O('x^N)); concat(0, Vec(serlaplace(sinh(2*(exp(x)-1))/2)))
(PARI) a(n) = sum(k=0, (n-1)\2, 4^k*stirling(n, 2*k+1, 2));
(PARI) Bell_poly(n, x) = exp(-x)*suminf(k=0, k^n*x^k/k!);
a(n) = round((Bell_poly(n, 2)-Bell_poly(n, -2)))/4;
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 05 2022
STATUS
approved