[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A343226
a(n) = gcd(sigma(n), n+A003415(n)), where A003415 is the arithmetic derivative, and sigma is the sum of divisors of n.
5
1, 3, 4, 1, 6, 1, 8, 5, 1, 1, 12, 28, 14, 1, 1, 1, 18, 39, 20, 2, 1, 1, 24, 4, 1, 1, 2, 4, 30, 1, 32, 7, 1, 1, 1, 1, 38, 1, 1, 18, 42, 1, 44, 4, 6, 1, 48, 4, 3, 1, 1, 2, 54, 15, 1, 4, 1, 1, 60, 8, 62, 1, 2, 1, 1, 1, 68, 14, 1, 3, 72, 3, 74, 1, 2, 4, 1, 1, 80, 2, 1, 1, 84, 16, 1, 1, 1, 12, 90, 3, 1, 4, 1, 1, 1, 4
OFFSET
1,2
COMMENTS
a(n) = n+1 iff n is prime (A000040). - Bernard Schott, Jun 01 2021
FORMULA
a(n) = gcd(A000203(n), A129283(n)) = gcd(A000203(n), A211991(n)).
a(n) = A000203(n) / A343227(n).
a(n) = 1 if n is squarefree semiprime (A006881). - Bernard Schott, Jun 02 2021
PROG
(PARI)
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A129283(n) = (n+A003415(n));
A343226(n) = gcd(sigma(n), A129283(n));
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Apr 15 2021
STATUS
approved