[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A341397
Number of integer solutions to (x_1)^2 + (x_2)^2 + ... + (x_8)^2 <= n.
7
1, 17, 129, 577, 1713, 3729, 6865, 12369, 21697, 33809, 47921, 69233, 101041, 136209, 174737, 231185, 306049, 384673, 469457, 579217, 722353, 876465, 1025649, 1220337, 1481521, 1733537, 1979713, 2306753, 2697537, 3087777, 3482913, 3959585, 4558737, 5155473
OFFSET
0,2
COMMENTS
Partial sums of A000143.
FORMULA
G.f.: theta_3(x)^8 / (1 - x).
a(n^2) = A055414(n).
MAPLE
b:= proc(n, k) option remember; `if`(n=0, 1, `if`(n<0 or k<1, 0,
b(n, k-1)+2*add(b(n-j^2, k-1), j=1..isqrt(n))))
end:
a:= proc(n) option remember; b(n, 8)+`if`(n>0, a(n-1), 0) end:
seq(a(n), n=0..33); # Alois P. Heinz, Feb 10 2021
MATHEMATICA
nmax = 33; CoefficientList[Series[EllipticTheta[3, 0, x]^8/(1 - x), {x, 0, nmax}], x]
Table[SquaresR[8, n], {n, 0, 33}] // Accumulate
PROG
(Python)
from math import prod
from sympy import factorint
def A341397(n): return (sum((prod((p**(3*(e+1))-(1 if p&1 else 15))//(p**3-1) for p, e in factorint(m).items()) for m in range(1, n+1)))<<4)+1 # Chai Wah Wu, Jun 21 2024
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Feb 10 2021
STATUS
approved